Promotor
Prof. Johan Smitz
Follicle Biology Laboratory
Vrije Universiteit Brussel

Leden van de examencommissie

Prof. Pierre Jouannet
Laboratoire de Biologie de la Reproduction
Université Paris V

Prof. Petra De Sutter
Departement Reproductieve Geneeskunde
Universiteit Gent

Prof. Ann Van Soom
Verloskunde, Voortplanting en Bedrijfsgeneeskunde
Universiteit Gent

Dr. Ir. Martine De Rycke
Centrum voor Medische Genetica
Vrije Universiteit Brussel

Prof. Paul Devroey
Centrum voor Reproductieve Geneeskunde
Vrije Universiteit Brussel

Prof. Karen Sermon, voorzitter
Department of Embryology and Genetics
Vrije Universiteit Brussel

Vrije Universiteit Brussel

Doctoraat in de Medische Wetenschappen
Academiejaar 2009-2010

UITNODIGING
Voor de openbare verdiging van het
doctoraatsproefschrift van

Ellen ANCKAERT

maandag 17 mei 2010
Ellen ANCKAERT

‘Imprinting disorders after Assisted Reproductive Technology: Study of imprinting establishment in oocytes under different in vitro follicle culture conditions in a mouse model’

Op maandag 17 mei 2010 om 17 uur in auditorium P. Brouwer van de Faculteit Geneeskunde & Farmacie Laarbeeklaan 103, 1090 Brussel

Situering van het proefschrift

Imprinted genen spelen een essentiële rol in de embryonale ontwikkeling en zijn betrokken in humane imprinting syndromen. DNA methylyatie heeft een belangrijke functie in de regulatie van de genexpressie. Studies hebben een verband aangetoond tussen medisch begeleide voortplanting (MBV) (pre-implantatie embryocultuur, in vitro maturatie van eicellen en ovariële stimulatie) en abnormale imprinting (DNA methylyatie) in verschillende diersoorten inclusief de mens. Bovendien werd een verhoogde incidentie van imprinting syndromen gesuggereerd in kinderen verwekt na MBV. De onderliggende mechanismen van abnormale imprinting na MBV zijn nog onbekend, maar kunnen opgespoord worden d.m.v. in vitro studies in diermodellen. Het muis follicelcultur systeem, dat de uitrijping van eicellen toelaat vanuit vroege folliculaire stadia werd gebruikt om verschillende hypothesen te testen. We toonden aan dat het follicelcultur model correcte DNA methylyatie patronen genereert voor imprinted genen in eicellen. Hoge dosissen follicel-stimulerend hormoon, het gebruik van minerale olie, hoge ammonium concentraties en methyl donor depletie in kweek milieu hadden weinig of geen impact op DNA methylyatie van imprinted genen. Deze observaties tonen aan dat het tot stand komen van imprinting patronen in eicellen gedurende eicelontwikkeling in vitro een vrij robuust proces is. Toekomstige studies zijn erop gericht om de effecten van cultuur op het bewaren van de correcte imprinting tijdens de vroege embryogenese na te gaan.

Curriculum Vitae


Ze werd in 2007 benoemd tot Kliniekhoofd in het vast kader van de Dienst Klinische Chemie en Radio-Immunologie van het UZ Brussel (o.i.v. Prof F. Gorus), waar ze zich momenteel vooral toelegt op de Hormonologie en Tumormerkers, Prenatale Screening, Hepatitis Serologie en de logistiek m.b.t. de externe contacten van de dienst. Ze is eerste auteur van 8 artikels en daarnaast co-auteur van 13 artikels in peer-reviewed internationale tijdschriften over studies die ze verrichtte voor het proefschrift, voor de Dienst Klinische Chemie en Radio-Immunologie en in het kader van multidisciplinair onderzoek met klinische diensten van het UZ Brussel.